
Chapter 3

Complexity of neural networks
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In this chapter, we evaluate the complexity of a class of ReLU neural networks. Section 3.1 presents
an upper bound on the Vapnik–Chervonenkis (VC) dimension of such a class, when the support is
fixed (that is, when the locations of the non-zero weights are fixed). Section 3.2 provides an upper
bound on the covering number and entropy of such a class, when the sparsity is fixed (that is, when the
number of non-zero weights are fixed, while their locations are left free). Both quantities are useful to
evaluate the variance term of a statistical risk in different contexts. As we will see, these terms increase
with the depth of the NN in a specific manner.

3.1 VC dimension of a class of neural networks

This section is mostly based on the lecture notes [Ger21], themself based on the paper [BHLM19].
In supervised classification, the VC dimension of a family H of classifiers is a key tool to evaluate

the stochastic error. We start by recalling some well known facts.

3.1.1 VC dimension

We recall here some basic notions on the VC dimension, see, e.g., [MRT18]. Let us consider the prob-
lem of classifying points x ∈Rd as label −1 or 1. Classifiers are measurable functions fromRd to {−1,1}.
For some set of classifiers H let us introduce the shattering coefficient: for all m ≥ 1,

SH (m) = max
x1,...,xm∈Rd

#{(h(x1), . . . ,h(xm)), h ∈H }, (3.1)

22
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which corresponds to the maximum number of different labeling for m points that H can produce.
For instance, if they can be arbitrarily labeled, then SH (m) = 2m . But if the class H is small, we can
have SH (m) < 2m .

As an illustration, let us consider the class of affine classifiers defined by

H = {x ∈Rd 7→ sign(aT x +b), a ∈Rd ,b ∈Rd }.

Then we easily check that when d = 2, we have SH (2) = 22, SH (3) = 23, SH (4) = 14 < 24.
Next, the Vapnik–Chervonenkis (VC) dimension of a classifier set H is defined as the maximum

number of points that can be arbitrary labelled with H , that is,

dVC(H ) = sup{m ≥ 0 : SH (m) = 2m} (3.2)

(convention SH (0) = 1). By definition of the shattering coefficient, dVC(H ) corresponds to the max-
imum number m such that there exist x1, . . . , xm ∈ Rd with #{(h(x1), . . . ,h(xm)) = 2m . For instance, in
the example above, the set of affine classifiers has a VC dimension equals to 3 in dimension 2. More
generally, we can prove that it is d +1 in dimension d ≥ 1 (see Exercise 9.5.2 in [Gir15]).

As an illustration, the shattering number/VC dimension is useful to bound the stochastic error for
the empirical risk minimizer. For instance, the following result is classical.

Theorem 3.1. [Theorem 9.1 and Corollary 9.7 in [Gir15]] Let (Xi ,Yi ), 1 ≤ i ≤ n, be i.i.d. copies of
(X ,Y ) ∈ Rd × {−1,1} some random variables. Consider any set of classifiers H (measurable functions
from Rd to {−1,1}) and let L(h) = P (Y ̸= h(X )) for all h ∈ H . Then the empirical risk minimizer
ĥn ∈ argmin h∈H

∑n
i=11{h(Xi ) ̸= Yi } is such that

L(ĥn)−min
h∈H

L(h) ≤ 2

√
2log(2SH (n))

n
+

√
t

2n

L(ĥn)−min
h∈H

L(h) ≤ 4

√
2dVC(H ) log(2n +2)

n
+

√
2t

n
,

each of these inequalities holding with probability at least 1−e−t .

3.1.2 Result

Here, we are going to upper-bound the VC dimension of the family of classifier corresponding to real-
izations of a NN with a fixed support (see definition in Chapter 1). Also, for simplicity, we will focus on
the ReLU activation function. This means that we consider the set of NN classifiers

H = {hw = sign◦R(Φw ), w ∈Rs }, (3.3)

whereΦw is the ReLU NN with input dimension d , output dimension 1, and the following fixed topol-
ogy:

• depth L ≥ 2;

• for each layer ℓ, a width Nℓ ≥ 1, and an overall width N =∑L
ℓ=1 Nℓ ≥ 3;

• for each layer ℓ, a sparsity sℓ ≥ 0, and an overall sparsity s =∑L
ℓ=1 sℓ ≥ N ;

• support sets with according sizes which will contain the supports of the network;

• weight values in these support sets gathered in the vector w ∈Rs ;
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Figure 3.1: An instance of NN topology with L = 3, N = 14, s1 = 14, s2 = 13, s3 = 6 and s = 33 which
generates a classifier family H as in (3.3) for d = 3 and indexed by w ∈R33.

Note that since w is allowed to contain zero values, sℓ is in fine only an upper bound on the sparsity
of the ℓ-th layer of the networkΦw .

In Figure 3.1, we have displayed an instance of such a possible topology, where the arrows code for
the positions of 25 active weights (the support is fixed here). Plus the 5+5+1 = 11 constant weights,
this gives s = 36 and thus w ∈R36 in (3.3).

Also, it is worth to note that, when exploring H , the moving variable is w . (Note that the variable
is not the input of the network here!). It is easy to see that R(Φw ) is thus a piecewise s-multivariate
polynomial (with a degree at most L). Hence, the maximal number of different labeling of m points
that classifiers in H can produce is limited by this constraint. This observation is the basis to show
the next result.

Theorem 3.2. [Theorem 7 in [BHLM19]] Consider the set H of NN with the above topology. Then for
all integer m ≥ s, we have SH (m) ≤ (4emL)sL and dVC(H ) ≤ 6sL log2(4eN ).

Note that this bound is almost sharp, in the sense that there exists a constant c > 0, such that for
each s ≥ cL and L ≥ c, there exists a ReLU NN of depth L and sparsity s such that the corresponding
classifier class satisfies dVC(H ) ≥ sL log(s/L)/c, see Theorem 3 in [BHLM19].

Theorem 3.2 can be extended to more general activation function: it holds for any activation func-
tion which is piece-wise polynomial with at most p +1 pieces and with degree bounded by r ≥ 0.

• For r = 0 (piece-wise constant activation function), the bound becomes

dVC(H ) ≤ L+ s log2(4epN log2(2epN )), (3.4)

which is of order s log(ps). In particular, this yields the desired bound (2.2) in Chapter 2.

• For r ≥ 1, the bound becomes

dVC(H ) ≤ L+ sL log2(4epR log2(2epR)), (3.5)

with R = N +N (L−1)r L−1. This bound is of order Ls log(pN )+L2s log(r ).

Combined with Theorem 3.1, the above result gives an upper bound on the stochastic error term
when optimizing a NN by minimizing the misclassification rate. However, note that this optimization
is made with a fixed support of the network, which does not correspond to what is done in practice.
Furthermore, to make a proper choice of the parameter s, N ,L this stochastic error term should be
balanced with the approximation error (bias term), which is not studied here (recall that some ap-
proximation error term are computed in Chapter 2). A more complete study addressing these points
can be found in [BSH21] in the classification context, and in Chapter 4 in the regression context.
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3.1.3 Proof of Theorem 3.2

Let us first prove the bound on the shattering number. More precisely, we establish

SH (m) ≤ (4emL)sL̄ ,

where L̄ = s−1 ∑L
i=1 s̄i ∈ [1,L] with s̄i =∑i

ℓ=1 sℓ denoting the number of weights of layers between 1 and
i .

Let x1, . . . , xm ∈Rd . The aim is to bound by above

#{(sign(hw (x1)), . . . , sign(hw (xm)), w ∈Rs }

the number of different sign vectors that we can form by using H . The idea is to build a partition
{Pi }1≤i≤M of Rs , of size M ≥ 1, such that for all i , j , the function w ∈ Pi 7→ hw (x j ) coincides with a
s-multivariate polynomial with degree at most L. Then, we have

#{(sign(hw (x1)), . . . , sign(hw (xm)), w ∈Rs } ≤
M∑

i=1
#{(sign(hw (x1)), . . . , sign(hw (xm)), w ∈ Pi }

≤
M∑

i=1
#{(sign(p1(w)), . . . , sign(pm(w))), w ∈Rs },

where each p j is a s-multivariate polynomial with degree at most L on Pi . We can now apply the
following lemma.

Lemma 3.3 (Theorem 8.3 in [ABB+99]). For any polynomial p1, . . . , pm with degree at most d ≥ 1 in
n ≤ m variables, we have

#{(sign(p1(w)), . . . ,sign(pm(w))), w ∈Rn} ≤ 2(2emd/n)n .

Hence, Lemma 3.3 gives the bound

SH (m) ≤ M2(2emL/s)s ,

provided that we have built a partition {Pi }1≤i≤M of Rs as above. In Section 3.1.4, we are going to prove
that this is possible with M smaller than a given bound. More precisely, we are going to prove the
following property.

Property 3.4. For all x1, . . . , xm ∈Rd , there is a partition {Pi }1≤i≤M of Rs , of size M ≥ 1, such that for all
i , j , the function w ∈ Pi 7→ hw (x j ) coincide with a s-multivariate polynomial with degree at most L and
with M satisfying

M ≤
L−1∏
ℓ=1

2(2emℓNℓ/s̄ℓ)s̄ℓ . (3.6)

Then, (3.6) and the above display entails (with NL = 1)

SH (m) ≤
L∏
ℓ=1

2(2emℓNℓ/s̄ℓ)s̄ℓ ≤ 2L

(∑L
ℓ=1 2emℓNℓ∑L

ℓ=1 s̄ℓ

)∑L
ℓ=1 s̄ℓ

.

The last inequality holds because the geometrical average is smaller than the arithmetic average: for
all y1, . . . , yL > 0, a1, . . . , aL ≥ 0 with

∑L
ℓ=1 aℓ > 0, we have(

L∏
ℓ=1

y aℓ
ℓ

)1/
∑L
ℓ=1 aℓ

≤
∑L
ℓ=1 aℓyℓ∑L
ℓ=1 aℓ

.
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(Apply this with aℓ = s̄ℓ and yℓ = 2emNℓℓ/s̄ℓ). Now, since
∑L
ℓ=1ℓNℓ ≤ N L, sL̄ =∑L

ℓ=1 s̄ℓ and max(L, N ) ≤
s ≤ sL̄, we obtain

SH (m) ≤ 2L

(
2emN L∑L
ℓ=1 s̄ℓ

)sL̄

≤ (4emL)sL̄ ,

which is the desired bound because L̄ ≤ L.
Finally, by applying Lemma 3.5 (used with r = 2eN L, t = L, w = sL̄), we deduce

dVC(H ) ≤ L+ sL̄ log2(4eN L log2(2eN L)) ≤ sL(1+ s log2(4eN L log2(2eN L))).

Since 1+ s log2(4eN L log2(2eN L)) ≤ 3s log2(4eN L) ≤ 6s log2(4eN ), because L ≤ N . This provides the
desired bound on the VC dimension.

Lemma 3.5. For all r ≥ 16, and w ≥ t > 0, for all m ≥ t +w log2(2r log2 r ), we have 2m > 2t (mr /w)w .

The proof of Lemma 3.5 is a direct consequence of the fact that Ψ : x 7→ x − t − w log1(xr /w) is
nondecreasing on [w log2,+∞) with a non-negative value in x0 = t+w log2(2r log2 r ). Indeed,Ψ(x0) ≥
w log2

(
2log2 r

1+log2(2r log2 r )

)
, which is a non-decreasing value of r ≥ 16, with value 0 in r = 16.

3.1.4 Proving Property 3.4

For simplicity of the exposition, we assume here that the input dimension is d = 1 (but once you have
read this with d = 1, the case of a general d is totally analogue).

Let us fix any x1, . . . , xm ∈Rd . Let us build a sequence of Rs -partitions1 S0 = {Rs }, S1, . . . , SL−1 that
are nested, in the sense that each S ∈Sℓ can be written as an union of sets in Sℓ+1, 0 ≤ ℓ≤ L−2. Also,
by recursion, we ensure the following property:

(a) for all ℓ ∈ {1, . . . ,L−1},
#Sℓ/#Sℓ−1 ≤ 2(2emℓNℓ/s̄ℓ)s̄ℓ .

(b) for all ℓ ∈ {1, . . . ,L −1}, all S ∈ Sℓ, all j ∈ {1, . . . ,m}, the output of any neuron of the ℓ-th layer of
the network taking x j as input is a multivariate polynomial function of w ∈ S, of degree at most
ℓ.

Let us start with ℓ = 1, which already contains the key idea. Consider the mN1 functions Ψh, j ,
1 ≤ h ≤ N1, 1 ≤ j ≤ m, as function of w ∈Rs̄1 , whereΨh, j corresponds to the output of the h-th neuron
of the hidden Layer when the network takes as input x j . They have the form (ph, j )+, where (recall that
the input dimension of the network is 1),

ph, j : w = (ah ,bh)1≤h≤N1 ∈Rs̄1 7→ ah x j +bh ∈R.

Now it is clear that all the functions (ph, j )+ are simultaneously multivariate polynomial functions of w
(of degree at most 1) provided that w is restricted to a subset of Rs̄1 that makes the mN1-dimensional
vector sign (p j ,h(w),1 ≤ h ≤ N1,1 ≤ j ≤ m) unchanged. Hence, we can build a partition S1 of Rs̄1

with Property (b) by looking at the portions of the space Rs̄1 that are shaped with the mN1 constraints
sign(ah x j +bh) =±1, 1 ≤ h ≤ N1,1 ≤ j ≤ m. More formally,

S1 =
{ ⋂

1≤h≤N1

⋂
1≤ j≤m

(sign◦ph, j )−1(ε j ,h),ε ∈ {−1,+1}mN1

}
.

1Here we allows for empty elements in the partition.
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To check (a), we should now evaluate the cardinal of this partition. In fact, it is

#{(sign◦p j ,h(w),1 ≤ h ≤ N1,1 ≤ j ≤ m), w ∈Rs̄1 }

which is bounded by 2(2emN1 ×1/s̄1)s̄1 by using Lemma 3.3 (there are mN1 polynomials, with degree
1, that are functions of s̄1 variables). This yields (a) and (b) for ℓ= 1. (Note that, strictly, S1 is a partition
of Rs̄1 , but it can be straightforwardly extended to a partition of Rs by multiplying each element of the
partition by the set Rs−s̄1 ).

Now assume that S1, . . . , Sℓ−1 are built with (a) and (b), and let us build the new partition Sℓ

for layer ℓ. Fix S a member of the partition Sℓ−1. We consider the mNℓ functions Ψh, j , 1 ≤ h ≤ Nℓ,
1 ≤ j ≤ m, as function of w ∈Rs̄ℓ , whereΨh, j corresponds to the output of the h-th neuron of the ℓ-th
layer when the network takes as input x j . They have the form (ph, j )+, where

ph, j : w ∈ S 7→
Nℓ−1∑
k=1

ak
h sk,ℓ(w)+bh ∈R.

where sk,ℓ(w) is the output of the k-th neuron of the layer ℓ−1 (for the input x j of the network), which
is a multivariate polynomial of degree ℓ−1 in w ∈ S. Hence, ph, j is a multivariate polynomial of degree
ℓ in w ∈ S. Applying the same reasoning as above (with Lemma 3.3), we can further partition the set S
into at most 2(2emNℓℓ/s̄ℓ)s̄ℓ elements. This gives a new partition satisfying (a) and (b).

Finally, we consider the partition P =SL−1 ofRs . By (b), the output of each neuron of the (L−1)-th
layer (for the input x j of the network) is a polynomial of degree at most L −1 in w ∈ S, for each S ∈P .
Hence, the output of the network, for each input x j , is a polynomial of degree at most L in w ∈ S, for
each S ∈P . By (a), the cardinal of the partition is bounded by

L−1∏
ℓ=1

2(2emNℓℓ/s̄ℓ)s̄ℓ .

This yields the claim.

3.2 Entropy of a class of neural networks

This section is based on the paper [SH20] (see also references therein).

3.2.1 Covering number and entropy

Let us start by recalling the general definition of the covering number, see, e.g., [SSBD14, MRT18].

Definition 3.6. Let E be a vector space, endowed with a norm ∥ · ∥, and A ⊂ E. For any δ ∈ (0,1), the
covering number N (δ, A,∥ · ∥) of A is the minimum number of ∥ · ∥-balls with radius δ that covers A.
More formally,

N (δ, A,∥ ·∥) = min
{

k ≥ 1 : ∃e1, . . . ,ek ∈ E , A ⊂∪k
i=1B∥·∥(ei ,δ)

}
, (3.7)

where B∥·∥(ei ,δ) = {x ∈ E : ∥x −ei∥ ≤ δ}. The entropy of A is then defined by log(N (δ, A,∥ ·∥)).

Let us provide some examples:

• For E =R endowed with the absolute value ∥ ·∥ = | · |, any subset A ⊂ [−c,c] is such that

N (δ, A,∥ ·∥) ≤ 2c/δ.

Indeed, letting k = ⌊2c/δ⌋, and letting (x1, . . . , xk ) = (−c+δ,−c+2δ, . . . ,−c+kδ), we have that any
point of [−c,c] is at distance less than δ of one of the xi ’s (note that −c +kδ> c −δ by definition
of k).
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• For E=Rd with the infinite norm ∥∥∞, any subset A ⊂ [−1,1]d is such that

N (δ, A,∥ ·∥) ≤ (2/δ)d .

This is the same idea as above, transposed in dimension d : we produce a grid of [−1,1]d with
mesh size δ. Letting k = ⌊2/δ⌋, this can be done by considering the grid (x1, . . . , xk ) = (−1+δ,−1+
2δ, . . . ,−1+kδ) on all dimensions. The number of points in this grid is kd .

• Still for (Rd ,∥∥∞), a subset that will be useful in the sequel is the set

A = {x ∈Rd : ∥x∥0 ≤ s,∥x∥∞ ≤ 1}, (3.8)

containing s-sparse vectors2, for some sparsity 1 ≤ s ≤ d . In that case, we have

N (δ, A,∥ ·∥) ≤ (2d/δ)s+1. (3.9)

Indeed, we have A ⊂ ∪S⊂{1,...,d},|S|≤s AS , where AS = {x ∈ Rd : ∀i ∉ S, xi = 0,∀i ∈ S, |xi | ≤ 1}. By
the above case, AS can be covered with ≤ (2/δ)|S| ∥ · ∥∞-balls of radius δ (extend the centers of
the ball in RS to Rd by adding the appropriate number of 0 coordinates). Hence, we can cover A
with a number of such balls smaller than

s∑
r=0

(
d

r

)
(2/δ)r ≤

s∑
r=0

d r (2/δ)r ≤ (2d/δ)s+1/(2d/δ−1) ≤ (2d/δ)s+1,

because 2d/δ≥ 2.

Note that the dependence in δ of the bound (3.9) is much smaller than bound (3.8) when s ≪ d .

In the sequel, we consider E being the vector space of bounded functions from [0,1]d in R, en-
dowed with the infinite norm. For some function set F , the covering number N (δ,F ,∥ · ∥∞) is well
known to be a key tool to evaluate the stochastic error of the empirical risk minimizer (ERM) in regres-
sion, as recalled by the next result.

Theorem 3.7 (Lemma 4 in [SH20]). Let us consider the non-parametric regression model where (Xi )1≤i≤n

are i.i.d. copy of X , some random variable valued in [0,1]d , and the responses are Yi = f0(Xi )+ εi ,
1 ≤ i ≤ n, where (εi )1≤i≤n are i.i.d. N (0,1) (independent of the Xi ’s). Let F be a class of functions from
[0,1]d to [−M , M ] (for some M > 0) and f̂ be the empirical risk minimizer over this class, that is,

f̂ ∈ argmin
f ∈F

n−1
n∑

i=1
(Yi − f (Xi ))2.

Then we have for any f0 : [0,1]d → [−M , M ], for all δ,ϵ> 0,

E
[
( f̂ (X )− f0(X ))2]≤ (1+ϵ)

[
inf
f ∈F

E
[
( f (X )− f0(X ))2]+M 2 18log(N )+72

nϵ
+32δM

]
,

for which N =N (δ,F ,∥ ·∥∞) ≥ 3.

The proof will be investigated in Chapter 4.

2Let us recall that a vector is s-sparse if it has no more than s non-zero coordinates.
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3.2.2 Result

The aim of this section is to provide an upper bound on the covering number of a function set defined
by realizations of NN. We consider ρ being the ReLU activation (although we will only use that ρ is a
1–Lip function with ρ(0) = 0). Since ρ is fixed throughout, we write R(W ) for R(Φ).

Let us first consider the set of NN realizations fromRd toRwith weights bounded by 1, that is, with
the notation of Chapter 1,

F (L, N ) = {
f = R(Φ), for some (Aℓ)1≤ℓ≤L , (bℓ)1≤ℓ≤L , N0 = d , NL = 1, max

1≤ℓ≤L
(∥Aℓ∥∞∨|bℓ|∞) ≤ 1

}
.

Next, for s > 0 being a sparsity parameter, we let

F (L, N , s) =
{

f ∈F (L, N ),
L∑
ℓ=1

(∥Aℓ∥0 +|bℓ|0) ≤ s
}

.

It is important to note that the support of the network is not fixed here, only the number of non-
zero weights is assumed to be below s. Hence, compared to the NN considered in Section 3.1, the
topology of the considered NN is much less constrained, which is more suitable for optimization. As
a counterpart, the weights are assumed to be bounded here. However, taking bounded weights is a
classical recommendation when using NN in practice, so it is not a big assumption here.

Finally, we denote

V =V (N ) :=
L∏
ℓ=0

(Nℓ+1). (3.10)

Then the following result holds.

Theorem 3.8. For V as in (3.10) and any δ ∈ (0,1), we have

logN (δ,F (L, N , s),∥ ·∥∞) ≤ (s +1)log

(
2LV 2

δ

)
.

This bound can in turn be used in results like Theorem 3.7 to upper bound the stochastic error
term. Obviously, this has to balanced with the bias error term in order to provide a bound on the
generalization risk. This will be investigated in the next chapter.

3.2.3 Proof of Theorem 3.8

Let us denote by T the total number of parameters of the NN, that is,

T =
L∑
ℓ=1

(NℓNℓ−1 +Nℓ).

Hence, T is the number of possibly active parameters of NN in F (L, N , s), while s is the number of
actually active parameters. In the sequel, we can thus describe the set F (L, N , s) as the functions hw ,
with w ∈RT which is s-sparse and ∥w∥∞ ≤ 1.

Applying the covering number bound (3.9), for any ϵ ∈ (0,1), there exist w1, . . . , wk with k ≤ (2T /ϵ)s+1

such that

F (L, N , s) ⊂
k⋃

i=1
{hw : ∥w −wi∥∞ ≤ ϵ}.

Now, applying Lemma 3.9, we have that ∥w −wi∥∞ ≤ ϵ entails ∥hw −hwi ∥∞ ≤ ϵLV . Hence, we deduce

F (L, N , s) ⊂
k⋃

i=1
{h : ∥h −hwi ∥∞ ≤ ϵLV }.
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This means that for any δ ∈ (0,1), we have

N (δ,F (L, N , s),∥ ·∥∞) ≤ (2T /ϵ)s+1,

for ϵ= δ/(LV ). Since

T ≤
L∑
ℓ=1

(Nℓ−1 +1)(Nℓ+1) ≤
L∑
ℓ=1

2−L+1V ≤ (2L2−L)V ≤V ,

because for all x ≥ 2, 2x2−x ≤ 1. We finally obtain

N (δ,F (L, N , s),∥ ·∥∞) ≤ (2LV 2/δ)s+1,

which is the desired bound.

3.2.4 A useful Lemma

The next lemma quantifies how much small errors in network parameters propagate into a global
error for the network realisation.

Lemma 3.9. Suppose f = R(W ) and f ∗ = R(W ∗) belong to F (L, N ) with W = (Ak ,bk )k=1,...,L and
W ∗ = (A∗

k ,b∗
k )k=1,...,L . Suppose that individual entries of Ak ’s and bk ’s are at most ε > 0 away from

the corresponding entries of A∗
k and b∗

k . Then for V as in (3.10),

∥ f − f ∗∥∞ ≤ εLV.

Proof. Recall f = TL ◦ρ ◦ · · · ◦ρ ◦T1 with Tk (x) = Ak x +bk and define, for k = 1, . . . ,L,

Bk f = ρ ◦Tk ◦ · · · ◦ρ ◦T1,

Ek f = TL ◦ρ ◦ · · · ◦Tk+1 ◦ρ,

and set EL f = B0 f = Id. We first prove two basic facts about Bk f ,Ek f .

Fact 1. If f ∈F (L, N ), then |(Bk f )(x)|∞ ≤∏k
l=1(Nl−1 +1) for x ∈ [0,1]d .

Let us check first that |(ρ ◦Ti )(y)|∞ ≤ Ni−1|y |∞+ 1 for any integer i . Indeed, |ρ(y)|∞ ≤ |y |∞ and
|Tk y |∞ ≤ |Ak y |∞+|bk |∞ ≤ Nk−1|y |∞+1, using ∥Ak∥∞ ≤ 1, |bk |∞ ≤ 1. In particular, if |y |∞ ≥ 1 we have
|(ρ ◦Ti )(y)|∞ ≤ (Ni−1 +1)|y |∞ for any i .

The result follows by recursion: for i = 1 we get |(ρ◦T1)(x)|∞ ≤ N0|x|∞+1 ≤ N0+1. Since N0+1 ≥ 1
it suffices feeds this bound into the previous inequality in terms of y .

Fact 2. The map x → (Ek f )(x) isΛk –Lipschitz, withΛk ≤∏L
l=k+1 Nl−1.

The composition of an L1–Lip by an L2–Lip function is an L1L2–Lip function. By definition ρ is
1–Lip, while Ti is Ni−1–Lip for any i , from which the fact follows.

Now let us write the difference f − f ∗ as the telescopic sum

f (x)− f ∗(x) =
L∑

k=1

[
(Ek f )◦Tk ◦ (Bk−1 f ∗)(x)− (Ek f )◦T ∗

k ◦ (Bk−1 f ∗)(x)
]

.
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Combining the triangle inequality with Fact 2 above,

| f (x)− f ∗(x)| ≤
L∑

k=1
Λk

∣∣(Tk −T ∗
k )◦ (Bk−1 f ∗)(x)

∣∣∞
≤

L∑
k=1

Λk
[∥Ak − A∗

k∥∞|(Bk−1 f ∗)(x)|1 +|bk −b∗
k |∞

]
≤

L∑
k=1

Λk
[
εNk−1|(Bk−1 f ∗)(x)|∞+ε] .

The term under brackets in the last display is at most, using Fact 1,

εNk−1

k−1∏
l=1

(Nl−1 +1)+1 ≤ ε
k∏

l=1
(Nl−1 +1).

One deduces the announced result

| f (x)− f ∗(x)| ≤ ε
L∑

k=1

L∏
l=1

(Nl−1 +1) ≤ εLV.
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